Technique Parameters Section
Applicability: Cranium, Synapse (core versions 0315+)

Antoine’s equation, Rackett’s equation, and heat capacity polynomials are a few examples of a general class of estimation techniques which require parameters specific to the chemical or mixture being estimated. (See the code to the right for an example of how parameters are used in Antoine's Equation.) The Technique Parameters section contains two fields for managing up to 100 parameters for each estimation technique: the Parameter Labels field; the Parameter Values field.

// Copy parameters for clarity a = params[2]; b = params[3]; c = params[4]; // Compute the vapor pressure pvp = a - b / (temp + c - 273.15); pvp = 10.0 ** (pvp);
Parameter Labels Field

The Technique's Parameter Labels Field specifies the label, regressability and description of each parameter. The label is used as column headings in the Parameter Values field's table control. The parameter description is used as a tooltip for each column.

1
Each technique parameter should be assigned a label, a regressability value and a description.
2
The entered label will be prefixed with the column index and used as the column heading in the Parameter Values field's table control.
3
The entered label's description will be used as a tooltip for the Parameter Values field's table column headings. Placing the mouse over the column heading will display the tooltip.
Example: Editing parameter labels
  1. Open a knowledge base document. Create a working copy of the document (see here) to use with this example.
  2. Change to the document's Techniques chapter and create a new Technique entity by pressing the "+" button in the menubar or executing the "Add New Page" command found on the Edit menu. A new, blank Technique page will be added to the current document.
  3. Scroll down to the Parameters Labels field and click on the field's table control. The application will activate the Parameters Labels dialog. (See documentation on the Parameter Labels Dialog for details.)
  4. Select the first empty row and press the dialog's Edit button. The application will activate the Parameter Label Edit dialog. Enter "T Min" for the label, "No" for the regressible option and "Minimum applicable temperature" for the description.
  5. Continue to add parameter labels for the maximum temperature and two coefficients, A and B.
  6. Finally, press the dialog's Save button. The application will store the entered labels into the current document.
Parameter Values Field

The Technique's Parameter Values Field is used to enter values for the parameters used in the technique's estimation model. Currently, the number of parameter values for each keyword is limited to 100 values.

Technique parameters are accessed by estimation models by using the Params function as shown below:

// Variable declarations double params[10], temp, est; // Retrieve technique parameters n = Params(technique, chemical, params, err); if( n < 3 ) return FALSE; // Check temperature limits if( temp < params[0] ) return FALSE; if( temp > params[1] ) return FALSE; // Calculate estimate est = params[2] + temp * params[3];
Tip: Also consider using group contributions and interaction parameters

In theory, the Technique's Parameter Values field can hold all kinds of values including group contributions and binary interaction parameters. However, both Cranium and Synapse provide separate, specialized fields for these types of parameters. These specialized fields provide a more convenient interface and tailored tools. Thus, use the Parameter Values field for values that are truly generic technique parameters.

Example: Editing parameter values
  1. Open a knowledge base document. Create a working copy of the document (see here) to use with this example.
  2. Change to the document's Techniques chapter and create a new Technique entity by pressing the "+" button in the menubar or executing the "Add New Page" command found on the Edit menu. A new, blank Technique page will be added to the current document.
  3. Scroll down to the Parameters Values field and click the left mouse button within the field's table. The application will activate the Parameters dialog. (See documentation on the Parameter Values Dialog for details.)
  4. Click the left mouse button on the first empty row and press the dialog's Edit button. The application will activate the Parameters Edit dialog.
    1
    Enter the parameters keyword, typically the name of a chemical or mixture.
    2
    Enter state variable limits and parameter values. The labels entered in the Parameter Labels field are used to label each entry.
    3
    Enter a reference for the parameter set.
    4
    Optionally add a comment. You may want to add details about the regression used to determin the parameter values, e.g., the number of points used in the regression, the correlation coefficient, etc.
  5. Press the Edit dialog's OK button.
  6. Finally press the Parameter Values dialog's Save button to store the entered parameters into the current document.
Example: Complete example

To complete and use this estimation technique you must specify the estimation property, add code and optionally add a few more parameter sets.

  1. Scroll to the Property field located near the top of the data pane. Click the left mouse button in the Property field's edit control. The application will activate the Technique's Estimated Property dialog. Select "Thermal Conductivity, Liquid - f(T)" and press the dialog's Save button.
  2. Scroll to the Estimation Model field. Copy the code below and paste it into the field's edit control.
    // Variable declarations double params[10], temp, est; string technique, chemical; int n, err; // Default assignments technique = Technique(); chemical = Chemical(); temp = Temperature(); // Retrieve technique parameters n = Params(technique, chemical, params, err); if( err != 0 ) return FALSE; if( n < 3 ) return FALSE; // Check temperature limits if( temp < params[0] ) return FALSE; if( temp > params[1] ) return FALSE; // Calculate estimate est = params[2] * temp + params[3]; // Assign estimate SetResult(est); return TRUE;

    In this code, 'technique' is the name of the estimation technique, 'chemical' is the keyword used to identify the parameter set, 'params' is the returned array of values and 'err' is the error return variable.

  3. Using the procedure described in the previous example, add the following parameter sets to the technique's Parameter Values field.
    Keyword Tmin Tmax A B
    1,10-Decanediol 352.5 471.1 0.27194 -0.000231664
    1,2-Dichloroethane 253.15 303.15 0.1865221 -0.000180857
    1-Heptanol 273.15 423.15 0.198583 -0.000165994
    Acrylonitrile 253.15 303.15 0.3075116 -0.00048743
  4. To test the new technique, change to the Chemicals chapter and navigate to 1-heptanol.
  5. Scroll down to the Temperature Dependent Section and select "Thermal Conductivity, Liquid - f(T)" - "Estimates" from the property control.
  6. Enter a series of temperatures between 280 K and 420 K. (See documentation on the Temperature Dependent Section for details.)
  7. Click the right mouse button on the Temperature Dependent Sections' Table field and select the Select Estimation Technique command from the menu.
  8. The applcation will activate the Estimation Technique Information dialog. Select Manual Mode as the Estimation Mode and our New Technique as the Manual Technique and then press the dialog's OK button.
  9. Select the Compute Estimates command from the Commands menu. The application will activate the Property Estimation Dialog. Press the dialog's Start button.
  10. Finally press the dialog's Save button to store the estimates generate by our new technique into the current document.

The new estimation technique generates estimates in very good agreement with experimental data.

Tip: Copy and paste repeated parameter subsets

It is very common for parameters to be applicable only for a certain range of temperatures, pressures or compositions. For example, one technique for the solid vapor pressure has the following two parameter subsets for benzene:

T min T max A B
-58.0 -30.0 2241 9.556
-30.0 5.0 2309 9.846

Many techniques expect multiple ranges of parameters. You still enter all parameters in a single row in the Parameter Values field.

Related Documentation
Topic Description
Estimating Chemical Properties a short video demonstrating how to estimate physical properties using either Synapse or Cranium.
Estimating Mixture Properties a short video demonstrating how to estimate physical properties using either Synapse or Cranium.
Getting Started using Cranium provides a quick tour of Cranium's capabilities including a discussion of structure editing.
Techniques Chapter the techniques chapter contains numerous sections for entering and displaying the code and parameter values needed to generate physical property estimates.