================================= Cyclohexanol ================================= Record Number: SuperChemsExportFile01.txt CAS Number: 108-93-0 Chemical Abstracts Name: Cyclohexanol Family: Empirical Formula: C6H12O IUPAC Name: Cyclohexanol Common Name: Cyclohexanol Structure: C6H12O Other Names: Cyclohexyl alcohol Hexalin ---------------- Constant Values ----------------- Molecular Weight, kg/kmol 100.161 Experimental Unknown 1 2 Lower Flammability Limit Temperature, K 311.453 Predicted Unknown 3 Upper Flammability Limit Temperature, K 370.751 Predicted Unknown 3 Critical Compressibility Factor 0.254958 Predicted Unknown 4 2 Acentric Factor 0.528 Experimental Unknown 5 2 van der Waals Reduced Volume, m^3/kmol van der Waals Area, m^2/kmol Gibbs Energy of Formation of Ideal Gas at 298.15 K and 101325 Pa, J/kmol -9.832e+07 Predicted Unknown 6 2 Gibbs Energy of Formation in Standard State at 298.15 K and 101325 Pa, J/kmol -1.3552e+08 Predicted Unknown 7 2 Radius of Gyration, m 3.601e-10 Experimental Unknown 1 2 Solubility Parameter at 298.15 K, (J/m^3)^(1/2) 23672 Experimental Unknown 1 2 Dipole Moment, c*m 6.2043e-30 Experimental Unknown 1 2 Refractive Index at 298.15 K Unknown Critical Temperature, K 650.1 Experimental < 1% 8 2 Melting Point (1 atm), K 296.6 Experimental Unknown 1 2 Normal Boiling Point (1 atm), K 434 Experimental Unknown 1 2 Enthalpy of Formation of Ideal gas at 298.15 K and 101325 Pa, J/kmol -2.862e+08 Experimental Unknown 9 2 Critical Pressure, Pa 4.26e+06 Experimental < 2% 8 2 Absolute Entropy of Ideal Gas at 298.15 K and 101325 Pa, J/kmol*K 360040 Experimental Unknown 9 2 Enthalpy of Fusion at Melting Point, J/kmol 7.219e+06 Predicted Unknown 10 2 Critical Volume, m^3/kmol 0.3235 Predicted Unknown 2 Net Enthalpy of Combustion Standard State (298.15)K), J/kmol -3.72698e+09 Experimental Unknown 11 2 Liquid Molar Volume at 298.15 K, m^3/kmol 0.11273 Predicted Unknown 12 Dielectric Constant Flash Point, K 340.35 Experimental Unknown 13 2 Lower Flammability Limit, vol % in air 0.29636 Predicted Unknown 14 3 Upper Flammability Limit, vol % in air 9.34448 Predicted Unknown 15 3 Auto Ignition Termperature, K 573.15 Experimental Unknown 16 2 Enthalpy of Formation in Standard State at 298.15 K and 101325 Pa, J/kmol -3.49155e+08 Experimental Unknown 11 2 Absolute Entropy in Standard State at 298.15 K and 101325 Pa, J/kmol*K 203870 Experimental Unknown 9 2 Triple Point Temperature, K Triple Point Pressure, Pa Enthalpy or Heat of Sublimation, J/kmol 7.07996e+07 Predicted Unknown 17 2 ---------- Temperature Dependent Values ---------- Heat of Vaporization, J/kmol 18 106 8.59768e+07 0.639862 -0.208836 0 0 0 296.6 598.092 Predicted Unknown Ideal Gas Heat Capacity, J/kmol*K 19 107 61880.1 346743 941.924 76911.8 393.658 0 296.6 1500 Predicted Unknown Liquid heat Capacity (at 1 atm below normal boiling point, saturation pressure at and above), J/kmol*K 19 100 237890 -920.745 4.673 -0.00779611 5.07147e-06 0 296.6 434 Predicted Unknown Liquid Density (at 1 atm below normal boiling point, saturation pressure at and above), kmol/m^3 18 105 1.42068 0.400079 14747.8 0.0297864 0 0 296.6 434 Predicted Unknown Liquid Thermal Conductivity (at 1 atm below normal boiling point, saturation pressure at and above), W/m*K 19 100 0 0 0 0 0 0 Unknown Absolute Liquid Viscosity (at 1 atm below normal boiling point, saturation pressure at and above), Pa*s 19 101 4692.58 -177092 -734.024 0.000881293 0 0 296.6 434 Predicted Unknown Solid Heat Capacity, J/kmol*K 19 100 43049.6 518.296 -0.399868 0.000849047 -6.53124e-07 0 246.6 296.6 Predicted Unknown Solid Density, kmol/m^3 2 100 0 0 0 0 0 0 Unknown Surface Tension (at 1 atm below normal boiling point, saturation pressure at and above), N/m 19 106 0.046522 -0.0276483 1.15471 0 0 0 296.6 434 Predicted Unknown Solid Thermal Conductivity, W/m*K 2 100 0 0 0 0 0 0 Unknown Solid Vapor Pressure, Pa 19 101 163.337 -11382.9 -21.315 2.12001e-05 0 0 246.6 296.6 Predicted Unknown Second Virial Coefficient, m^3/kmol 2 100 0 0 0 0 0 0 Unknown Liquid Vapor Pressure, Pa 18 101 97.3685 -10267.5 -10.2058 -1.06334e-06 0 0 296.6 598.092 Experimental Unknown Vapor Thermal Conductivity (at 1 atm or below), W/m*K 19 102 144.885 0.422347 2.86034e+07 5.25498e+09 0 0 434 850.1 Predicted Unknown Vapor Viscosity (at 1 atm or below), Pa*s 20 102 4.17488e-06 0.350203 1184.79 -48456 0 0 434 850.1 Predicted Unknown Notes 1 T.E. Daubert and R.P. Danner. "Physical and Thermodynamic Properties of Pure Chemicals." Hemisphere Publishing Corporation. Washington, DC, USA. Year 1992. 2 Generated by MKSTest on Apr 09, 2020 at 16:51:33. 3 WARNING: FLAMMABILITY LIMITS ARE DETERMINED AT 298 K AND 1 ATMOSPHERE. HIGHER TEMPERATURES AND/OR HIGHER PRESSURES WILL LOWER THE LOWER LIMIT AND RAISE THE UPPER LIMIT. 4 Estimated using Definition [MKS] for the Critical Compressibility. Referenced in: Bruce E. Poling, John M. Prausnitz and John P. O'Connell. "The Properties of Gases and Liquids." The McGraw-Hill Companies, Inc. New York, New York, USA. Edition Fifth, 2001. 5 D. Ambrose. "Vapour-Liquid Critical Properties." National Physical Laboratory. Great Britain. Number Chem 107, 1980. 6 Estimated using Joback Method [MKS] for the Gibbs Energy of Formation, Vapor at 298K. Referenced in: Kevin G. Joback and Robert C. Reid. "Estimation of Pure-Component Properties from Group-Contributions." Chemical Engineering Communications. Volume 57, page 233-243, 1987. 7 Estimated using Definition [MKS] for the Gibbs Energy of Formation, Liquid at 298K. Referenced in: Molecular Knowledge Systems, Inc. "MKS Internal Calculation or Derivation." . 8 Michael Gude and Amyn S. Teja. "Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols." Journal of Chemical and Engineering Data. Volume 40, number 5, page 1025-1036, 1995. 9 Eugene S. Domalski and Elizabeth D. Hearing. "Estimation of the Thermodynamic Properties of C-H-N-O-S-Halogen Compounds at 298.15." Journal of Physical and Chemical Reference Data. Volume 22, number 4, page 805-1159, 1993. 10 Estimated using Joback Method [MKS] for the Enthalpy of Fusion at Tm. Referenced in: Kevin G. Joback and Robert C. Reid. "Estimation of Pure-Component Properties from Group-Contributions." Chemical Engineering Communications. Volume 57, page 233-243, 1987. 11 George S. Parks, John R. Mosley and Peter V. Peterson. "Heats of Combustion and Formation of Some Organic Compounds Containing Oxygen." The Journal of Chemical Physics. Volume 18, number 1, page 152-153, 1950. 12 The volume value was calculated from the parameters regressed for the liquid density. 13 Horng-Jang Liaw, Vincent Gerbaud and Yi-Hua Li. "Prediction of Miscible Mixtures Flash-Point from UNIFAC Group Contribution Methods." Fluid Phase Equilibria. Volume 300, number 1-2, page 70-82, 2011. 14 Estimated using Seaton Method [MKS] for the Flammability Limit, Lower. Referenced in: William H. Seaton. "Group Contribution Method for Predicting the Lower and the Upper Flammable Limits of Vapors in Air." Journal of Hazardous Materials. Volume 27, number 2, page 169-185, 1991. 15 Estimated using High + Danner Method [MKS] for the Flammability Limit, Upper. Referenced in: Martin S. High and Ronald P. Danner. "Prediction of Upper Flammability Limit by a Group Contribution Method." Industrial and Engineering Chemistry Research. Volume 26, number 7, page 1395-1399, 1987. 16 Amy B. Spencer and Guy R. Colonna. "Fire Protection Guide to Hazardous Materials." National Fire Protection Association. Quincy, Massachusetts, USA. Edition 13, 2002. 17 Estimated using Goodman + Wilding + Oscarson + Rowley Method [MKS] for the Enthalpy of Sublimation at Tm. Referenced in: B. T. Goodman, W. V. Wilding, J. L. Oscarson and R. L. Rowley. "Use of the DIPPR Database for the Development of QSPR Correlations: Solid Vapor Pressure and Heat of Sublimation of Organic Compounds." International Journal of Thermophysics. Volume 25, number 2, page 337-350, 2004. 18 Parameters regressed from database data. 19 Parameters regressed from new estimates. 20 Parameters regressed from database estimates.