================================= Cyclohexanol =================================
Record Number:
SuperChemsExportFile01.txt
CAS Number:
108-93-0
Chemical Abstracts Name:
Cyclohexanol
Family:
Empirical Formula:
C6H12O
IUPAC Name:
Cyclohexanol
Common Name:
Cyclohexanol
Structure:
C6H12O
Other Names:
Cyclohexyl alcohol
Hexalin
---------------- Constant Values -----------------
Molecular Weight, kg/kmol
100.161
Experimental
Unknown
1
2
Lower Flammability Limit Temperature, K
311.453
Predicted
Unknown
3
Upper Flammability Limit Temperature, K
370.751
Predicted
Unknown
3
Critical Compressibility Factor
0.254958
Predicted
Unknown
4
2
Acentric Factor
0.528
Experimental
Unknown
5
2
van der Waals Reduced Volume, m^3/kmol
van der Waals Area, m^2/kmol
Gibbs Energy of Formation of Ideal Gas at 298.15 K and 101325 Pa, J/kmol
-9.832e+07
Predicted
Unknown
6
2
Gibbs Energy of Formation in Standard State at 298.15 K and 101325 Pa, J/kmol
-1.3552e+08
Predicted
Unknown
7
2
Radius of Gyration, m
3.601e-10
Experimental
Unknown
1
2
Solubility Parameter at 298.15 K, (J/m^3)^(1/2)
23672
Experimental
Unknown
1
2
Dipole Moment, c*m
6.2043e-30
Experimental
Unknown
1
2
Refractive Index at 298.15 K
Unknown
Critical Temperature, K
650.1
Experimental
< 1%
8
2
Melting Point (1 atm), K
296.6
Experimental
Unknown
1
2
Normal Boiling Point (1 atm), K
434
Experimental
Unknown
1
2
Enthalpy of Formation of Ideal gas at 298.15 K and 101325 Pa, J/kmol
-2.862e+08
Experimental
Unknown
9
2
Critical Pressure, Pa
4.26e+06
Experimental
< 2%
8
2
Absolute Entropy of Ideal Gas at 298.15 K and 101325 Pa, J/kmol*K
360040
Experimental
Unknown
9
2
Enthalpy of Fusion at Melting Point, J/kmol
7.219e+06
Predicted
Unknown
10
2
Critical Volume, m^3/kmol
0.3235
Predicted
Unknown
2
Net Enthalpy of Combustion Standard State (298.15)K), J/kmol
-3.72698e+09
Experimental
Unknown
11
2
Liquid Molar Volume at 298.15 K, m^3/kmol
0.11273
Predicted
Unknown
12
Dielectric Constant
Flash Point, K
340.35
Experimental
Unknown
13
2
Lower Flammability Limit, vol % in air
0.29636
Predicted
Unknown
14
3
Upper Flammability Limit, vol % in air
9.34448
Predicted
Unknown
15
3
Auto Ignition Termperature, K
573.15
Experimental
Unknown
16
2
Enthalpy of Formation in Standard State at 298.15 K and 101325 Pa, J/kmol
-3.49155e+08
Experimental
Unknown
11
2
Absolute Entropy in Standard State at 298.15 K and 101325 Pa, J/kmol*K
203870
Experimental
Unknown
9
2
Triple Point Temperature, K
Triple Point Pressure, Pa
Enthalpy or Heat of Sublimation, J/kmol
7.07996e+07
Predicted
Unknown
17
2
---------- Temperature Dependent Values ----------
Heat of Vaporization, J/kmol
18
106
8.59768e+07
0.639862
-0.208836
0
0
0
296.6
598.092
Predicted
Unknown
Ideal Gas Heat Capacity, J/kmol*K
19
107
61880.1
346743
941.924
76911.8
393.658
0
296.6
1500
Predicted
Unknown
Liquid heat Capacity (at 1 atm below normal boiling point, saturation pressure at and above), J/kmol*K
19
100
237890
-920.745
4.673
-0.00779611
5.07147e-06
0
296.6
434
Predicted
Unknown
Liquid Density (at 1 atm below normal boiling point, saturation pressure at and above), kmol/m^3
18
105
1.42068
0.400079
14747.8
0.0297864
0
0
296.6
434
Predicted
Unknown
Liquid Thermal Conductivity (at 1 atm below normal boiling point, saturation pressure at and above), W/m*K
19
100
0
0
0
0
0
0
Unknown
Absolute Liquid Viscosity (at 1 atm below normal boiling point, saturation pressure at and above), Pa*s
19
101
4692.58
-177092
-734.024
0.000881293
0
0
296.6
434
Predicted
Unknown
Solid Heat Capacity, J/kmol*K
19
100
43049.6
518.296
-0.399868
0.000849047
-6.53124e-07
0
246.6
296.6
Predicted
Unknown
Solid Density, kmol/m^3
2
100
0
0
0
0
0
0
Unknown
Surface Tension (at 1 atm below normal boiling point, saturation pressure at and above), N/m
19
106
0.046522
-0.0276483
1.15471
0
0
0
296.6
434
Predicted
Unknown
Solid Thermal Conductivity, W/m*K
2
100
0
0
0
0
0
0
Unknown
Solid Vapor Pressure, Pa
19
101
163.337
-11382.9
-21.315
2.12001e-05
0
0
246.6
296.6
Predicted
Unknown
Second Virial Coefficient, m^3/kmol
2
100
0
0
0
0
0
0
Unknown
Liquid Vapor Pressure, Pa
18
101
97.3685
-10267.5
-10.2058
-1.06334e-06
0
0
296.6
598.092
Experimental
Unknown
Vapor Thermal Conductivity (at 1 atm or below), W/m*K
19
102
144.885
0.422347
2.86034e+07
5.25498e+09
0
0
434
850.1
Predicted
Unknown
Vapor Viscosity (at 1 atm or below), Pa*s
20
102
4.17488e-06
0.350203
1184.79
-48456
0
0
434
850.1
Predicted
Unknown
Notes
1
T.E. Daubert and R.P. Danner. "Physical and Thermodynamic Properties of Pure Chemicals." Hemisphere Publishing Corporation. Washington, DC, USA. Year 1992.
2
Generated by MKSTest on Apr 09, 2020 at 16:51:33.
3
WARNING: FLAMMABILITY LIMITS ARE DETERMINED AT 298 K AND 1 ATMOSPHERE. HIGHER TEMPERATURES AND/OR HIGHER PRESSURES WILL LOWER THE LOWER LIMIT AND RAISE THE UPPER LIMIT.
4
Estimated using Definition [MKS] for the Critical Compressibility. Referenced in: Bruce E. Poling, John M. Prausnitz and John P. O'Connell. "The Properties of Gases and Liquids." The McGraw-Hill Companies, Inc. New York, New York, USA. Edition Fifth, 2001.
5
D. Ambrose. "Vapour-Liquid Critical Properties." National Physical Laboratory. Great Britain. Number Chem 107, 1980.
6
Estimated using Joback Method [MKS] for the Gibbs Energy of Formation, Vapor at 298K. Referenced in: Kevin G. Joback and Robert C. Reid. "Estimation of Pure-Component Properties from Group-Contributions." Chemical Engineering Communications. Volume 57, page 233-243, 1987.
7
Estimated using Definition [MKS] for the Gibbs Energy of Formation, Liquid at 298K. Referenced in: Molecular Knowledge Systems, Inc. "MKS Internal Calculation or Derivation." .
8
Michael Gude and Amyn S. Teja. "Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols." Journal of Chemical and Engineering Data. Volume 40, number 5, page 1025-1036, 1995.
9
Eugene S. Domalski and Elizabeth D. Hearing. "Estimation of the Thermodynamic Properties of C-H-N-O-S-Halogen Compounds at 298.15." Journal of Physical and Chemical Reference Data. Volume 22, number 4, page 805-1159, 1993.
10
Estimated using Joback Method [MKS] for the Enthalpy of Fusion at Tm. Referenced in: Kevin G. Joback and Robert C. Reid. "Estimation of Pure-Component Properties from Group-Contributions." Chemical Engineering Communications. Volume 57, page 233-243, 1987.
11
George S. Parks, John R. Mosley and Peter V. Peterson. "Heats of Combustion and Formation of Some Organic Compounds Containing Oxygen." The Journal of Chemical Physics. Volume 18, number 1, page 152-153, 1950.
12
The volume value was calculated from the parameters regressed for the liquid density.
13
Horng-Jang Liaw, Vincent Gerbaud and Yi-Hua Li. "Prediction of Miscible Mixtures Flash-Point from UNIFAC Group Contribution Methods." Fluid Phase Equilibria. Volume 300, number 1-2, page 70-82, 2011.
14
Estimated using Seaton Method [MKS] for the Flammability Limit, Lower. Referenced in: William H. Seaton. "Group Contribution Method for Predicting the Lower and the Upper Flammable Limits of Vapors in Air." Journal of Hazardous Materials. Volume 27, number 2, page 169-185, 1991.
15
Estimated using High + Danner Method [MKS] for the Flammability Limit, Upper. Referenced in: Martin S. High and Ronald P. Danner. "Prediction of Upper Flammability Limit by a Group Contribution Method." Industrial and Engineering Chemistry Research. Volume 26, number 7, page 1395-1399, 1987.
16
Amy B. Spencer and Guy R. Colonna. "Fire Protection Guide to Hazardous Materials." National Fire Protection Association. Quincy, Massachusetts, USA. Edition 13, 2002.
17
Estimated using Goodman + Wilding + Oscarson + Rowley Method [MKS] for the Enthalpy of Sublimation at Tm. Referenced in: B. T. Goodman, W. V. Wilding, J. L. Oscarson and R. L. Rowley. "Use of the DIPPR Database for the Development of QSPR Correlations: Solid Vapor Pressure and Heat of Sublimation of Organic Compounds." International Journal of Thermophysics. Volume 25, number 2, page 337-350, 2004.
18
Parameters regressed from database data.
19
Parameters regressed from new estimates.
20
Parameters regressed from database estimates.